Unusual target selectivity of perisomatic inhibitory cells in the hilar region of the rat hippocampus.
نویسندگان
چکیده
Perisomatic inhibitory innervation of all neuron types profoundly affects their firing characteristics and vulnerability. In this study we examined the postsynaptic targets of perisomatic inhibitory cells in the hilar region of the dentate gyrus where the proportion of potential target cells (excitatory mossy cells and inhibitory interneurons) is approximately equal. Both cholecystokinin (CCK)- and parvalbumin-immunoreactive basket cells formed multiple contacts on the somata and proximal dendrites of mossy cells. Unexpectedly, however, perisomatic inhibitory terminals arriving from these cell types largely ignored hilar GABAergic cell populations. Eighty-ninety percent of various GABAergic neurons including other CCK-containing basket cells received no input from CCK-positive terminals. Parvalbumin-containing cells sometimes innervated each other but avoided 75% of other GABAergic cells. Overall, a single mossy cell received 40 times more CCK-immunoreactive terminals and 15 times more parvalbumin-positive terminals onto its soma than the cell body of an average hilar GABAergic cell. In contrast to the pronounced target selectivity in the hilar region, CCK- and parvalbumin-positive neurons innervated each other via collaterals in stratum granulosum and moleculare. Our observations indicate that the inhibitory control in the hilar region is qualitatively different from other cortical areas at both the network level and the level of single neurons. The paucity of perisomatic innervation of hilar interneurons should have profound consequences on their action potential generation and on their ensemble behavior. These findings may help explain the unique physiological patterns observed in the hilus and the selective vulnerability of the hilar cell population in various pathophysiological conditions.
منابع مشابه
Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex.
Whole-cell patch-clamp recordings and immunocytochemical experiments were performed to determine the short- and long-term effects of lateral fluid percussion head injury on the perisomatic inhibitory control of dentate granule cells in the adult rat, with special reference to the development of trauma-induced hyperexcitability. One week after the delivery of a single, moderate (2.0-2.2 atm) mec...
متن کاملSynaptic Reorganization of the Perisomatic Inhibitory Network in Hippocampi of Temporal Lobe Epileptic Patients
GABAergic inhibition and particularly perisomatic inhibition play a crucial role in controlling the firing properties of large principal cell populations. Furthermore, GABAergic network is a key element in the therapy attempting to reduce epileptic activity. Here, we present a review showing the synaptic changes of perisomatic inhibitory neuronal subtypes in the hippocampus of temporal lobe epi...
متن کاملThymoquinone recovers learning function in a rat model of Alzheimer’s disease
Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...
متن کاملIntra-CA1 administration of FK-506 (tacrolimus) in rat impairs learning and memory in an inhibitory avoidance paradigm
Objective(s): Calcineurin (CN) is a main phosphatase and a critical regulator of cellular pathways for learning, memory, and plasticity. The FK-506 (tacrolimus),a phosphatase inhibitor, is a fungal-derived agent and a common immune suppressant extensively used for tissue transplantation. To further clarify the role of CN in different stages oflearning and memory the main aim of this study was t...
متن کاملNeurotrophic effect of hydroalcoholic extract of Malva neglecta leaf on pyramidal neurons of CA1 hippocampus of male Wistar rat following ischemia /reperfusion
Abstract Background: Stroke is the second leading cause of death in the world and has irreversible consequences. Cerebral ischemia/reperfusion (I/R) through production of oxidants and inflammatory markers causes apoptosis of brain neurons. On the other hand, in various studies, the antioxidant and anti-inflammatory effects of the Malva neglecta have been proven. Therefore, in this study, we inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 18 شماره
صفحات -
تاریخ انتشار 2000